

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Methyl 2-({6-[(1-methoxy-2-methyl-1oxopropan-2-yl)carbamoyl]pyridin-2-yl}formamido)-2-methylpropanoate

Mohamed A. Al-Omar,^{a,b} Abdel-Galil E. Amr,^{b,c} Hazem A. Ghabbour,^a Ching Kheng Quah^d‡and Hoong-Kun Fun^d*§

^aPharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, ^bDrug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, ^cApplied Organic Chemistry Department, National Research Center, Dokki 12622, Cairo, Egypt, and ^dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail: hkfun@usm.my

Received 28 March 2012; accepted 4 April 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.006 Å; R factor = 0.050; wR factor = 0.133; data-to-parameter ratio = 7.6.

In the title compound, $C_{17}H_{23}N_3O_6$, the two methoxycarbonyl C-O-C=O planes are inclined at dihedral angles of 5.3 (4) and $83.9 (4)^{\circ}$ with respect to the central pyridine ring. An intramolecular N-H···O hydrogen bond generates an S(5)ring motif. In the crystal, molecules are linked into a chain along the c axis via $C-H \cdots O$ hydrogen bonds.

Related literature

For general background to and the pharmacological activity of the title compound, see: Abou-Ghalia & Amr (2004); Abou-Ghalia et al. (2003); Al-Omar & Amr (2010); Amr (2000); Attia et al. (1997, 2000); Amr et al. (2009); Fakhr et al. (2008). For standard bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

[‡] Thomson Reuters ResearcherID: A-5525-2009. § Thomson Reuters ResearcherID: A-3561-2009.

7477 measured reflections

 $R_{\rm int} = 0.043$

1898 independent reflections

1249 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

$V = 1965.8 (4) \text{ Å}^3$
Z = 4
Cu $K\alpha$ radiation
$\mu = 0.79 \text{ mm}^{-1}$
T = 296 K
$0.63 \times 0.52 \times 0.09 \text{ mm}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\min} = 0.560, T_{\max} = 0.932$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.050$	H atoms treated by a mixture of
$wR(F^2) = 0.133$	independent and constrained
S = 0.91	refinement
1898 reflections	$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$
250 parameters	$\Delta \rho_{\rm min} = -0.17 \ {\rm e} \ {\rm \AA}^{-3}$
1 restraint	

Table 1 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2 - H1N2 \cdots O2$ $C3 - H3A \cdots O6^{i}$	0.85 (4) 0.93	2.08 (4) 2.49	2.614 (5) 3.204 (6)	120 (3) 134
	. 1 . 1			

Symmetry code: (i) $-x + \frac{1}{2}, y, z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through the research group project No. RGP-VPP-099.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5109).

References

Abou-Ghalia, M. H. & Amr, A. E. (2004). Amino Acids, 26, 283-289.

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Al-Omar, M. A. & Amr, A. E. (2010). Molecules, 15, 4711-4721.
- Amr, A. E. (2000). Indian J. Heterocycl. Chem. 10, 49-58.
- Amr, A. E., Sabrry, N. M., Abdalla, M. M. & Abdel-Wahab, B. F. (2009). Eur. J. Med. Chem. 44, 725-735.
- Attia, A., Abdel-Salam, O. I. & Amr, A. E. (1997). Egypt. J. Chem. 40, 317-325.
- Attia, A., Abdel-Salam, O. I. & Amr, A. E. (2000). Egypt. J. Chem. 43, 297-307

Abou-Ghalia, M. H., Amr, A. E. & Abdulla, M. M. (2003). Z. Naturforsch. Teil B. 58, 903-910.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison,

Wisconsin, USA.

Fakhr, I. M., Amr, A. E., Sabry, N. M. & Abdalah, M. M. (2008). Arch. Pharm. Chem. Life Sci. 341, 174–180. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2012). E68, o1377-o1378 [doi:10.1107/S1600536812014651]

Methyl 2-({6-[(1-methoxy-2-methyl-1-oxopropan-2-yl)carbamoyl]pyridin-2-yl}formamido)-2-methylpropanoate

Mohamed A. Al-Omar, Abdel-Galil E. Amr, Hazem A. Ghabbour, Ching Kheng Quah and Hoong-Kun Fun

Comment

In our previous work, we have reported that certain substituted pyridines and Schiff base derivatives are antimicrobial, anti-inflammatory and anticancer agents (Abou-Ghalia & Amr, 2004; Abou-Ghalia *et al.*, 2003; Al-Omar & Amr, 2010; Amr, 2000; Attia *et al.*, 1997, 2000). In continuation of our interests in the chemical and pharmacological properties of disubstituted pyridine derivatives (Amr *et al.*, 2009; Fakhr *et al.*, 2008), we report herein the synthesis and antimicrobial activities of the title compound.

In the title molecule (Fig. 1), the two methoxycarbonyl moieties (O2/O3/C8/C9 and O5/O6/C14/C15) are nearly planar [maximum deviations of 0.005 (5) and 0.009 (5) Å at atoms C8 and C14, respectively] and are inclined at angles of 5.3 (4) and 83.9 (4)° with the pyridine ring (N1/C1–C5). Bond lengths (Allen *et al.*, 1987) and angles are within normal ranges. The molecular structure is stabilized by an intramolecular N2—H1N2···O2 hydrogen bond (Table 1), which generates an *S*(5) ring motif (Bernstein *et al.*, 1995).

In the crystal (Fig. 2), molecules are linked into one-dimensional chains propagating along the [001] direction *via* intermolecular C3—H3A···O6 hydrogen bonds (Table 1).

Experimental

To a solution of 2-methylalanine methyl esters (2 mmol), 2,6-pyridinedicarboyl dichloride (1 mmol) in dichloromethane (15 mL) was added at -10 °C with stirring. Triethylamine was added drop wise to the reaction mixture in order to keep the reaction mixture slightly basic (pH \sim 8). Stirring was continued for 3 h more at -15 °C and then 12 h at r.t. The reaction mixture was then washed with water, 1N hydrochloric acid, 1N sodium bicarbonate and finally with water and dried over anhydrous calcium chloride. The solvent was evaporated under reduced pressure to dryness and the obtained solid was crystallized from chloroform to give the titled bis-ester.

Refinement

Atoms H1N2 and H1N3 were located in a difference Fourier map and refined freely [N-H = 0.84 (4) and 0.95 (5) Å]. The remaining hydrogen atoms were positioned geometrically (C-H = 0.93 or 0.96 Å) and were refined using a riding model, with $U_{iso}(H) = 1.2$ or 1.5 $U_{eq}(C)$. A rotating group model was applied to the methyl groups. Even though Cu radiation was used, there was not enough anomalous dispersion to determine the absolute configuration. Thus, Friedel pairs have been merged.

Computing details

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008) and *PLATON* (Spek, 2009).

Figure 1

The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms. The intramolecular hydrogen bond is shown as a dashed line.

Figure 2

A crystal packing diagram of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.

Methyl 2-({6-[(1-methoxy-2-methyl-1-oxopropan-2-yl)carbamoyl]pyridin-2-yl}formamido)-2-methylpropanoate

Crystal data	
$C_{17}H_{23}N_3O_6$	F(000) = 776
$M_r = 365.38$	$D_{\rm x} = 1.235 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, $Pca2_1$	Cu K α radiation, $\lambda = 1.54178$ Å
Hall symbol: P 2c -2ac	Cell parameters from 874 reflections
a = 10.2307 (10) Å	$\theta = 4.8 - 49.5^{\circ}$
b = 9.3038 (11) Å	$\mu=0.79~\mathrm{mm^{-1}}$
c = 20.652 (2) Å	T = 296 K
V = 1965.8 (4) Å ³	Plate, colourless
Z = 4	$0.63 \times 0.52 \times 0.09 \text{ mm}$
Data collection	

Bruker SMART APEXII CCD area-detector
diffractometer7477 measured reflections
1898 independent reflectionsRadiation source: fine-focus sealed tube1249 reflections with $I > 2\sigma(I)$ Graphite monochromator $R_{int} = 0.043$ φ and ω scans $\theta_{max} = 70.3^{\circ}, \theta_{min} = 6.4^{\circ}$ Absorption correction: multi-scan $h = -12 \rightarrow 10$ (SADABS; Bruker, 2009) $k = -10 \rightarrow 11$ $T_{min} = 0.560, T_{max} = 0.932$ $l = -24 \rightarrow 13$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.050$	H atoms treated by a mixture of independent
$wR(F^2) = 0.133$	and constrained refinement
<i>S</i> = 0.91	$w = 1/[\sigma^2(F_o^2) + (0.0914P)^2]$
1898 reflections	where $P = (F_o^2 + 2F_c^2)/3$
250 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$
1 restraint	$\Delta \rho_{\rm max} = 0.19 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant	$\Delta ho_{ m min} = -0.17 \ m e \ m \AA^{-3}$
direct methods	Extinction correction: SHELXTL (Sheldrick,
Secondary atom site location: difference Fourier	2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
map	Extinction coefficient: 0.0102 (11)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.6692 (3)	0.7355 (4)	0.72873 (15)	0.1024 (10)
O2	0.8492 (3)	0.6849 (5)	0.51295 (18)	0.1213 (13)
O3	1.0304 (3)	0.5979 (4)	0.55776 (19)	0.1156 (12)
O4	0.2658 (2)	0.9156 (4)	0.46691 (14)	0.1017 (11)
05	0.3806 (4)	0.6611 (7)	0.3829 (2)	0.1392 (17)
O6	0.3250 (4)	0.8241 (7)	0.3084 (2)	0.170 (2)
N1	0.5055 (3)	0.8326 (3)	0.58446 (14)	0.0676 (8)
N2	0.7327 (3)	0.7306 (4)	0.62369 (18)	0.0745 (8)
H1N2	0.715 (4)	0.744 (4)	0.584 (2)	0.068 (12)*
N3	0.4811 (3)	0.8725 (5)	0.45674 (16)	0.0830 (10)
H1N3	0.554 (5)	0.851 (5)	0.484 (3)	0.102 (14)*
C1	0.5188 (3)	0.8156 (4)	0.64814 (17)	0.0665 (9)
C2	0.4185 (4)	0.8403 (4)	0.69200 (19)	0.0740 (10)
H2A	0.4315	0.8263	0.7361	0.089*
C3	0.2992 (4)	0.8860 (5)	0.66876 (19)	0.0774 (10)
H3A	0.2308	0.9055	0.6971	0.093*
C4	0.2830 (3)	0.9021 (5)	0.60377 (18)	0.0737 (10)
H4A	0.2027	0.9306	0.5870	0.088*
C5	0.3875 (3)	0.8757 (4)	0.5630(2)	0.0684 (9)
C6	0.6502 (3)	0.7562 (5)	0.67077 (17)	0.0720 (9)
C7	0.8613 (3)	0.6622 (4)	0.6287 (2)	0.0741 (9)
C8	0.9097 (4)	0.6522 (5)	0.5605 (2)	0.0862 (11)
С9	1.0870 (6)	0.5824 (10)	0.4936 (3)	0.147 (3)
H9A	1.1591	0.5165	0.4954	0.220*

H9B	1.1173	0.6742	0.4786	0.220*
H9C	1.0219	0.5462	0.4643	0.220*
C10	0.9549 (4)	0.7569 (6)	0.6675 (3)	0.1005 (15)
H10A	0.9658	0.8474	0.6458	0.151*
H10B	1.0381	0.7099	0.6712	0.151*
H10C	0.9196	0.7731	0.7100	0.151*
C11	0.8503 (6)	0.5137 (6)	0.6576 (3)	0.1151 (17)
H11A	0.7937	0.4559	0.6313	0.173*
H11B	0.8149	0.5205	0.7006	0.173*
H11C	0.9353	0.4703	0.6595	0.173*
C12	0.3733 (3)	0.8903 (5)	0.49148 (19)	0.0774 (11)
C13	0.4893 (4)	0.8851 (7)	0.3870 (2)	0.0988 (17)
C14	0.3863 (4)	0.7913 (10)	0.3552 (2)	0.121 (2)
C15	0.2980 (11)	0.5560 (12)	0.3517 (4)	0.212 (5)
H15A	0.3126	0.4633	0.3709	0.317*
H15B	0.3185	0.5520	0.3064	0.317*
H15C	0.2080	0.5827	0.3571	0.317*
C16	0.6234 (4)	0.8267 (9)	0.3661 (3)	0.135 (3)
H16A	0.6336	0.7301	0.3816	0.203*
H16B	0.6912	0.8862	0.3838	0.203*
H16C	0.6291	0.8273	0.3197	0.203*
C17	0.4747 (6)	1.0409 (9)	0.3669 (3)	0.143 (3)
H17A	0.4022	1.0830	0.3896	0.215*
H17B	0.4594	1.0461	0.3211	0.215*
H17C	0.5533	1.0924	0.3774	0.215*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.101 (2)	0.140 (3)	0.0657 (19)	0.0175 (18)	-0.0122 (14)	0.0065 (18)
O2	0.096 (2)	0.188 (4)	0.080(2)	0.027 (2)	0.0005 (17)	0.002 (2)
03	0.0874 (19)	0.157 (3)	0.102 (3)	0.0322 (18)	0.0008 (16)	-0.005 (2)
O4	0.0631 (13)	0.167 (3)	0.0754 (17)	0.0001 (15)	-0.0090 (13)	0.0276 (19)
05	0.133 (3)	0.200 (5)	0.085 (3)	-0.049 (3)	-0.009 (2)	-0.016 (3)
06	0.114 (3)	0.318 (7)	0.078 (2)	-0.045 (4)	-0.038 (2)	0.024 (3)
N1	0.0623 (15)	0.085 (2)	0.0558 (18)	-0.0025 (14)	-0.0017 (11)	-0.0001 (14)
N2	0.0652 (15)	0.096 (2)	0.0620 (19)	0.0030 (14)	-0.0075 (14)	0.0038 (18)
N3	0.0638 (16)	0.130 (3)	0.0552 (18)	0.0040 (16)	-0.0019 (13)	0.0054 (17)
C1	0.0708 (19)	0.074 (2)	0.054 (2)	-0.0044 (15)	-0.0051 (14)	0.0036 (17)
C2	0.085 (2)	0.080(2)	0.057 (2)	-0.0078 (18)	0.0009 (17)	-0.005 (2)
C3	0.071 (2)	0.090 (3)	0.071 (3)	-0.0034 (19)	0.0125 (17)	-0.008 (2)
C4	0.0646 (19)	0.088 (3)	0.068 (2)	-0.0023 (17)	0.0045 (15)	-0.0001 (19)
C5	0.0603 (17)	0.081 (2)	0.064 (2)	-0.0025 (15)	-0.0025 (15)	-0.0004 (18)
C6	0.075 (2)	0.087 (3)	0.054 (2)	-0.0019 (18)	-0.0104 (16)	0.0023 (18)
C7	0.0707 (19)	0.079 (2)	0.072 (2)	0.0061 (17)	-0.0080 (17)	0.001 (2)
C8	0.072 (2)	0.101 (3)	0.086 (3)	0.0066 (19)	-0.005 (2)	-0.004 (3)
C9	0.104 (4)	0.217 (8)	0.118 (4)	0.037 (4)	0.019 (3)	-0.021 (5)
C10	0.078 (2)	0.123 (4)	0.100 (3)	0.012 (2)	-0.020 (2)	-0.019 (3)
C11	0.125 (4)	0.100 (4)	0.121 (4)	0.025 (3)	0.010 (3)	0.021 (3)
C12	0.0661 (19)	0.105 (3)	0.061 (2)	-0.0039 (18)	-0.0013 (16)	0.008 (2)

supplementary materials

C13	0.066 (2)	0.174 (5)	0.056 (2)	-0.004 (2)	-0.0016 (15)	0.014 (3)	
C14	0.086 (3)	0.222 (7)	0.056 (3)	-0.027 (3)	-0.004(2)	0.012 (4)	
C15	0.227 (10)	0.274 (12)	0.134 (6)	-0.117 (9)	-0.011 (6)	-0.065 (7)	
C16	0.076 (3)	0.249 (8)	0.081 (3)	-0.005 (3)	0.010(2)	-0.032 (4)	
C17	0.111 (4)	0.213 (8)	0.106 (4)	-0.015 (4)	0.003 (3)	0.066 (5)	

Geometric parameters (Å, °)

01—C6	1.228 (5)	С7—С8	1.497 (6)	
O2—C8	1.200 (6)	C7—C11	1.509 (7)	
O3—C8	1.335 (5)	C7—C10	1.528 (6)	
О3—С9	1.454 (7)	С9—Н9А	0.9600	
O4—C12	1.234 (4)	С9—Н9В	0.9600	
O5—C14	1.341 (9)	С9—Н9С	0.9600	
O5—C15	1.444 (8)	C10—H10A	0.9600	
O6—C14	1.191 (6)	C10—H10B	0.9600	
N1—C1	1.332 (5)	C10—H10C	0.9600	
N1—C5	1.347 (4)	C11—H11A	0.9600	
N2—C6	1.309 (5)	C11—H11B	0.9600	
N2—C7	1.466 (5)	C11—H11C	0.9600	
N2—H1N2	0.84 (4)	C13—C17	1.516 (9)	
N3—C12	1.326 (5)	C13—C14	1.518 (8)	
N3—C13	1.447 (6)	C13—C16	1.538 (7)	
N3—H1N3	0.95 (5)	C15—H15A	0.9600	
C1—C2	1.387 (5)	C15—H15B	0.9600	
C1—C6	1.527 (5)	C15—H15C	0.9600	
C2—C3	1.379 (6)	C16—H16A	0.9600	
C2—H2A	0.9300	C16—H16B	0.9600	
C3—C4	1.361 (6)	C16—H16C	0.9600	
С3—НЗА	0.9300	C17—H17A	0.9600	
C4—C5	1.382 (5)	C17—H17B	0.9600	
C4—H4A	0.9300	C17—H17C	0.9600	
C5—C12	1.491 (6)			
C8—O3—C9	116.4 (4)	C7—C10—H10A	109.5	
C1405C15	116.6 (7)	C7—C10—H10B	109.5	
C1—N1—C5	116.8 (3)	H10A—C10—H10B	109.5	
C6—N2—C7	127.2 (4)	C7—C10—H10C	109.5	
C6—N2—H1N2	123 (3)	H10A-C10-H10C	109.5	
C7—N2—H1N2	109 (3)	H10B—C10—H10C	109.5	
C12—N3—C13	125.2 (3)	C7—C11—H11A	109.5	
C12—N3—H1N3	111 (3)	C7—C11—H11B	109.5	
C13—N3—H1N3	123 (3)	H11A—C11—H11B	109.5	
N1—C1—C2	123.4 (3)	C7—C11—H11C	109.5	
N1—C1—C6	115.8 (3)	H11A—C11—H11C	109.5	
C2-C1-C6	120.7 (3)	H11B—C11—H11C	109.5	
C3—C2—C1	118.6 (4)	O4—C12—N3	122.9 (4)	
С3—С2—Н2А	120.7	O4—C12—C5	120.8 (3)	
C1—C2—H2A	120.7	N3—C12—C5	116.3 (3)	
C4—C3—C2	119.0 (4)	N3—C13—C17	110.1 (5)	

С4—С3—НЗА	120.5	N3—C13—C14	110.1 (4)
C2—C3—H3A	120.5	C17—C13—C14	111.3 (5)
C3—C4—C5	119.1 (4)	N3—C13—C16	107.6 (4)
C3—C4—H4A	120.4	C17—C13—C16	110.4 (5)
C5—C4—H4A	120.4	C14—C13—C16	107.2 (5)
N1—C5—C4	123.1 (4)	O6—C14—O5	123.7 (7)
N1—C5—C12	116.1 (3)	O6—C14—C13	124.6 (8)
C4—C5—C12	120.8 (3)	O5—C14—C13	111.4 (4)
O1—C6—N2	126.4 (4)	O5—C15—H15A	109.5
O1—C6—C1	119.7 (4)	O5—C15—H15B	109.5
N2	114.0 (3)	H15A—C15—H15B	109.5
N2	104.9 (3)	O5—C15—H15C	109.5
N2	111.0 (4)	H15A—C15—H15C	109.5
C8—C7—C11	109.9 (4)	H15B—C15—H15C	109.5
N2	110.5 (3)	C13—C16—H16A	109.5
C8—C7—C10	108.8 (4)	C13—C16—H16B	109.5
C11—C7—C10	111.6 (4)	H16A—C16—H16B	109.5
O2—C8—O3	122.6 (4)	C13—C16—H16C	109.5
O2—C8—C7	125.8 (4)	H16A—C16—H16C	109.5
O3—C8—C7	111.7 (4)	H16B—C16—H16C	109.5
O3—C9—H9A	109.5	С13—С17—Н17А	109.5
O3—C9—H9B	109.5	С13—С17—Н17В	109.5
H9A—C9—H9B	109.5	H17A—C17—H17B	109.5
O3—C9—H9C	109.5	С13—С17—Н17С	109.5
H9A—C9—H9C	109.5	H17A—C17—H17C	109.5
Н9В—С9—Н9С	109.5	H17B—C17—H17C	109.5
C5—N1—C1—C2	-0.2 (5)	C11—C7—C8—O2	114.7 (6)
C5—N1—C1—C6	175.6 (4)	C10—C7—C8—O2	-122.9 (5)
N1—C1—C2—C3	-0.6 (6)	N2—C7—C8—O3	176.8 (4)
C6—C1—C2—C3	-176.2 (4)	C11—C7—C8—O3	-63.8 (5)
C1—C2—C3—C4	1.5 (6)	C10—C7—C8—O3	58.6 (5)
C2—C3—C4—C5	-1.6 (7)	C13—N3—C12—O4	2.3 (8)
C1—N1—C5—C4	0.1 (6)	C13—N3—C12—C5	-178.6 (4)
C1—N1—C5—C12	-178.4 (4)	N1-C5-C12-O4	173.0 (4)
C3—C4—C5—N1	0.8 (7)	C4—C5—C12—O4	-5.5 (7)
C3—C4—C5—C12	179.2 (4)	N1—C5—C12—N3	-6.1 (6)
C7—N2—C6—O1	4.9 (7)	C4—C5—C12—N3	175.4 (4)
C7—N2—C6—C1	-174.3 (3)	C12—N3—C13—C17	70.9 (6)
N1-C1-C6-01	-178.9 (4)	C12—N3—C13—C14	-52.2 (7)
C2-C1-C6-01	-3.0 (6)	C12—N3—C13—C16	-168.7 (5)
N1—C1—C6—N2	0.3 (5)	C15—O5—C14—O6	2.2 (10)
C2C1C6N2	176.3 (4)	C15-05-C14-C13	-172.4 (6)
C6—N2—C7—C8	176.8 (4)	N3—C13—C14—O6	141.2 (6)
C6—N2—C7—C11	58.1 (6)	C17—C13—C14—O6	18.8 (8)
C6—N2—C7—C10	-66.1 (5)	C16—C13—C14—O6	-102.1 (8)
C9—O3—C8—O2	1.1 (8)	N3—C13—C14—O5	-44.3 (6)
C9—O3—C8—C7	179.6 (5)	C17—C13—C14—O5	-166.7 (5)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	D—H···A
N2—H1 <i>N</i> 2···O2	0.85 (4)	2.08 (4)	2.614 (5)	120 (3)
C3—H3 <i>A</i> ···O6 ⁱ	0.93	2.49	3.204 (6)	134

Symmetry code: (i) -x+1/2, *y*, z+1/2.